-
什么是低壓降穩(wěn)壓器(LDO)的壓降? - 第五部分
本文章繼續(xù)此系列,將聚焦“低壓降”的含義,并介紹安森美半導(dǎo)體低壓降和極低壓降值的LDO產(chǎn)品和方案。您的應(yīng)用需要低壓降的LDO嗎?我們將講解壓降的含義,如何測量以及具有標(biāo)準(zhǔn)壓降和極低壓降的LDO之間的差異。
2020-11-19
低壓降穩(wěn)壓器 LDO
-
克服PCB板間多連接器組對齊的挑戰(zhàn)
印刷電路板(PCB板)制造商在提高可靠性和降低成本的同時,也面臨著增加密度、縮小占位面積、減少側(cè)面尺寸、管理熱流和提高數(shù)據(jù)速率等重大壓力。隨著他們不斷成功地消減這些壓力,一個有趣的挑戰(zhàn)出現(xiàn)在設(shè)計師們的面前,即在兩片PCB板之間去對齊多個已配對連接器組。
2020-11-19
PCB板 連接器
-
一文教你理清開關(guān)電源的電壓和電流控制模式
控制電路就是保證在負(fù)載波動的條件下輸出的穩(wěn)定。在選擇開關(guān)電源控制方案時,控制模式主要分兩種:一種是監(jiān)測輸出電壓的大小,調(diào)節(jié)PWM占空比,保證輸出電壓的穩(wěn)定,即電壓控制模式。另一種同時監(jiān)測電壓和電流,調(diào)節(jié)PWM占空比,保證輸出電壓的穩(wěn)定和電流在正常范圍內(nèi),不至于過流,即電流控制模式。...
2020-11-17
開關(guān)電源 電壓控制模式 電流控制模式
-
如何才能產(chǎn)生只有幾百毫伏的極低電壓呢?
在過去的幾年里,由于微控制器、CPU、DSP等數(shù)字電路的幾何結(jié)構(gòu)尺寸不斷縮小,電子元器件的電源電壓一直持續(xù)下降。在測量領(lǐng)域也有一些需要低電源電壓的應(yīng)用。
2020-11-17
極低電壓 微控制器 CPU
-
TE榮獲2020年度ASPENCORE全球電子成就獎
上海——2020年11月16日——全球高速計算與網(wǎng)絡(luò)應(yīng)用領(lǐng)域創(chuàng)新連接方案領(lǐng)軍企業(yè)TE Connectivity(TE)近日宣布TE散熱橋I/O連接器榮獲ASPENCORE 2020年度全球電子成就獎。該產(chǎn)品具有出色的散熱性能、靈活性、創(chuàng)新性,以及杰出的行業(yè)影響力,因而被評為“年度高性能無源/分立器件”。
2020-11-16
上?!?020年11月16日——全球高速計算與網(wǎng)絡(luò)應(yīng)用領(lǐng)域創(chuàng)新連接方案領(lǐng)軍企業(yè)TE Connectivity(TE)近日宣布TE散熱橋I/O連接器榮獲ASPENCORE 2020年度全球電子成就獎。
-
高功率電源應(yīng)用中需要怎樣的隔離驅(qū)動?
在電源與充電樁等高功率應(yīng)用中,通常需要專用驅(qū)動器來驅(qū)動最后一級的功率晶體管。這是因為大多數(shù)微控制器輸出并沒有針對功率晶體管的驅(qū)動進(jìn)行優(yōu)化,如足夠的驅(qū)動電流和驅(qū)動保護(hù)功能等,而且直接用微控制器來驅(qū)動,會導(dǎo)致功耗過大等弊端。
2020-11-16
高功率電源應(yīng)用 隔離驅(qū)動
-
利用S參數(shù)和電磁波理論來分析信號完整性
傳輸線理論為今天的SI分析帶來了福音。信號的上升時間是SI問題中的一個關(guān)鍵參數(shù)。在SI分析中,各種互連線的電學(xué)模型可以看作是傳輸線。在高速PCB設(shè)計中,必須牢記傳輸線理論的基礎(chǔ)知識,理解傳輸線效應(yīng)。
2020-11-16
S參數(shù) 電磁波理論 信號完整性
-
分析與診斷:“從小到大到更好”
任何診斷都離不開信息匯總與分析。相比數(shù)字和統(tǒng)計數(shù)據(jù),人們總是更擅長通過圖形化的信息來分析問題,尤其是當(dāng)數(shù)據(jù)呈現(xiàn)的是隨著時間的推移而發(fā)生變化的問題。以記錄你一天步行信息的GPS為例,盡管下面這張圖上下兩部分展示的是同一天的行程,但下方的地圖軌跡明顯要比上方的坐標(biāo)和時間記錄更容易讓人...
2020-11-13
LamDA GPS
-
超低功耗MCU如何降低功耗
低功耗是 MCU 的一項非常重要的指標(biāo),比如某些可穿戴的設(shè)備,其攜帶的電量有限,如果整個電路消耗的電量特別大就會經(jīng)常出現(xiàn)電量不足的情況。
2020-11-13
低功耗MCU
- 智能終端的進(jìn)化論:邊緣AI突破能耗與安全隱私的雙重困局
- 水泥電阻技術(shù)深度解析:選型指南與成本對比
- 滑動分壓器的技術(shù)解析與選型指南
- 如何通過 LLC 串聯(lián)諧振轉(zhuǎn)換器優(yōu)化LLC-SRC設(shè)計?
- 超聲波清洗暗藏"芯片密碼":二氧化硅顆粒撞擊機理揭秘
- 運動追蹤+沖擊檢測雙感知!意法半導(dǎo)體微型AI傳感器開啟智能設(shè)備新維度
- 線繞電阻與金屬氧化物電阻技術(shù)對比及選型指南
- 拓?fù)鋬?yōu)化:解鎖電池供電設(shè)備高效設(shè)計密碼
- 鋁殼電阻技術(shù)解析:原理、優(yōu)勢與產(chǎn)業(yè)生態(tài)全景
- 厚膜電阻在消費電子電源管理及家電控制中的技術(shù)應(yīng)用與創(chuàng)新
- 從光伏到充電樁,線繞電阻破解新能源設(shè)備浪涌防護(hù)難題
- GMSL雙模解析:像素模式和隧道模式如何突破傳輸瓶頸
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall