-
針對負電壓浪涌的對策及其效果
繼上一篇“正電壓浪涌對策”之后,本文將會通過示例來看針對負電壓浪涌的對策及其效果。
2022-02-11
負電壓浪涌 對策
-
派恩杰SiC驅(qū)動設(shè)計新探索:如何避免誤開通?
隨著SiC 工藝逐漸成熟和成本不斷下降,SiC MOSFET憑借整體性能優(yōu)于硅基器件一個數(shù)量級的優(yōu)勢正逐漸普及,獲得越來越多的工程應(yīng)用。相較于傳統(tǒng)的Si功率器件,SiC MOSFET具有更小的導(dǎo)通電阻,更快的開關(guān)速度,使得系統(tǒng)損耗大幅降低,效率提升,體積減小,從而實現(xiàn)變換器的高效高功率密度化,因此廣泛...
2022-02-10
派恩杰 SiC驅(qū)動設(shè)計 誤開通
-
如何精確監(jiān)測和控制工業(yè)應(yīng)用中的氣體流量
許多工業(yè)自動化 (IA) 和制造設(shè)施在各種工藝和應(yīng)用中經(jīng)常需要使用空氣、氧氣、氮氣、氫氣、氦氣和氬氣等氣體。具體用途包括清潔、切割、焊接和化學(xué)品制造。在許多情況下,精密設(shè)備和化學(xué)工藝需要對氣體進行極其精細的控制,以避免造成難以診斷的設(shè)備故障或過程失敗。此外,過量的氣體流量會導(dǎo)致效率...
2022-02-09
精確監(jiān)測 控制工業(yè)應(yīng)用 氣體流量
-
將ICT和FCT優(yōu)勢結(jié)合在單個測試適配器中
一般以針床來測試不上電的電路板,使用直接數(shù)字合成(DDS)和離散傅立葉變換(DFT)等技術(shù)生成刺激信號進行模擬測量分析,以此讓在線測試儀(ICA)測量電感、電容、阻抗和電阻等實際數(shù)據(jù),以便確認所有被測器件(DUT)測試節(jié)點的結(jié)果在公差范圍內(nèi),以及是否有開路、短路、錯件或極性接反的問題。這...
2022-02-09
ICT和FCT 測試 適配器
-
如何利用TI Designs來驗證和加快設(shè)計過程
如果處理器和現(xiàn)場可編程門陣列FPGA全部由同樣的電壓供電運行,并且不需要排序和控制等特殊功能的話,會不會變的很簡單呢?不幸的是,大多數(shù)處理器和FPGA需要不同的電源電壓,啟動/關(guān)斷序列和不同類型的控制。
2022-02-08
TI Designs 處理器 現(xiàn)場可編程門陣列FPGA
-
如何控制原邊振鈴
反激電源是最常用的拓撲之一。其變壓器漏感常會引起原邊振鈴,并導(dǎo)致會損壞 MOSFET 的電壓尖峰。因此,通過變壓器和MOSFET 組件的合理設(shè)計來控制振鈴非常重要。針對如何降低漏感,MPS 引入了一種 RCD 鉗位電路設(shè)計策略,下面我們將對此進行詳細地描述。
2022-02-07
控制 原邊 振鈴
-
發(fā)揮系統(tǒng)支撐作用開拓碳中和新藍圖,關(guān)鍵技術(shù)助推鋰電儲能多場景加速落地
前不久,國務(wù)院印發(fā)的《2030 年前碳達峰行動方案》指出,到2025年新型儲能裝機容量達到3000萬千瓦以上。而國家發(fā)改委和國家能源局稍早前發(fā)布的《關(guān)于加快推動新型儲能發(fā)展的指導(dǎo)意見》也明確了儲能發(fā)展目標:新型儲能裝機規(guī)模從2020年底的3.27GW增長至2025年的30GW,五年間年均復(fù)合增長率約55.8%。...
2022-01-29
系統(tǒng)支撐 碳中和 鋰電儲能
-
太陽能捕獲效率低?看來你沒選對匹配的前端管理系統(tǒng)
太陽能看似是“免費”的可再生能源,但實際上,要想將撞擊電子轉(zhuǎn)變成可利用的資源,需要嚴謹?shù)脑O(shè)計方案、先進的電子設(shè)備以及精密的電池充電/放電管理系統(tǒng)。
2022-01-28
太陽能 捕獲效率 前端管理系統(tǒng)
-
如何使用示波器、AFG和萬用表測試LED 驅(qū)動器的調(diào)光線性度?
隨著LED燈珠技術(shù)的發(fā)展,相較于傳統(tǒng)的模擬調(diào)光技術(shù),數(shù)字調(diào)光技術(shù)在近幾年得到了長足的發(fā)展?,F(xiàn)如今在燈具市場里有成千上萬種調(diào)光產(chǎn)品可供選擇,在調(diào)光驅(qū)動選擇上我們需要考慮到這些要素。調(diào)光平滑度,調(diào)光深度,在調(diào)光過程中是否有可感知的頻閃和紋波。
2022-01-27
示波器 AFG 萬用表 LED 驅(qū)動器
- 800V牽引逆變器:解鎖電動汽車續(xù)航與性能躍升的工程密鑰
- 熱敏電阻技術(shù)全景解析:原理、應(yīng)用與供應(yīng)鏈戰(zhàn)略選擇
- 如何破解導(dǎo)航系統(tǒng)中MEMS IMU數(shù)據(jù)同步困局?
- 非線性響應(yīng)破局!新一代eFuse跳變曲線如何提升能效?
- 電源測量的導(dǎo)線布局如何影響測量精度?
- 小信號放大新思路,低成本儀表放大器的差分輸出設(shè)計
- 隔離SEPIC轉(zhuǎn)換器如何破解反激式拓撲的EMI與調(diào)節(jié)困局?
- 維科杯·OFweek2025年度評選:揭秘工業(yè)自動化及數(shù)字化轉(zhuǎn)型“領(lǐng)航者”,誰將脫穎而出?
- 尋找傳感器界的“隱形王者”!維科杯·OFweek 2025年度評選等你來戰(zhàn)
- 厚膜電阻在通信基礎(chǔ)設(shè)施中的關(guān)鍵應(yīng)用與技術(shù)突破
- 碳膜電位器技術(shù)解析:從原理到選型與頭部廠商對比
- 貿(mào)澤電子聯(lián)合ADI與Samtec發(fā)布工業(yè)AI/ML電子書:探索工業(yè)自動化未來
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall